博客
关于我
376. Wiggle Subsequence
阅读量:250 次
发布时间:2019-03-01

本文共 3015 字,大约阅读时间需要 10 分钟。

A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.

For example, [1,7,4,9,2,5] is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, [1,4,7,2,5] and [1,7,4,5,5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.

Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.

Example 1:

Input: [1,7,4,9,2,5]

Output: 6
Explanation: The entire sequence is a wiggle sequence.
Example 2:

Input: [1,17,5,10,13,15,10,5,16,8]

Output: 7
Explanation: There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].
Example 3:

Input: [1,2,3,4,5,6,7,8,9]

Output: 2

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/wiggle-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

给出一个数组,找到其满足摆动的子序列,最长长度。

方法一:动态规划

up[i]表示到i为止,以上升为结束的最大长度,down[i] 则相反。

class Solution {    public int wiggleMaxLength(int[] nums) {        if (nums.length <= 1) {            return nums.length;        }        int []up = new int[nums.length];        int []down = new int[nums.length];        up[0] = 1;        down[0] = 1;        for (int i = 1; i < nums.length; i++) {            if (nums[i] > nums[i - 1]) {                up[i] = down[i - 1] + 1;                down[i] = down[i - 1];            } else if (nums[i] < nums[i - 1]){                up[i] = up[i - 1];                down[i] = up[i - 1] + 1;            } else {                up[i] = up[i - 1];                down[i] = down[i - 1];            }        }        return Math.max(up[nums.length - 1], down[nums.length - 1]);    }}

方法二:找出拐点的数量即可。

class Solution {    public int wiggleMaxLength(int[] nums) {        if (nums.length <= 1) {            return nums.length;        }        boolean isUp = false;        int index = 1;        int ans = 1;// 找到第一处拐点        for (; index < nums.length; index++) {            if (nums[index] > nums[index - 1]) {                isUp = true;                ans = 2;                break;            } else if (nums[index] < nums[index - 1]){                isUp = false;                ans = 2;                break;            }        }// 找出所有拐点的数量        for (int i = index; i < nums.length; i++) {            if (nums[i] > nums[i - 1]) {                if (!isUp) {                    ans++;                    isUp = true;                }            } else if (nums[i] < nums[i - 1]) {                if (isUp) {                    ans++;                    isUp = false;                }            }        }        return ans;    }}

 

你可能感兴趣的文章
Mysql 分页语句 Limit原理
查看>>
MySql 创建函数 Error Code : 1418
查看>>
MySQL 创建新用户及授予权限的完整流程
查看>>
mysql 创建表,不能包含关键字values 以及 表id自增问题
查看>>
mysql 删除日志文件详解
查看>>
mysql 判断表字段是否存在,然后修改
查看>>
MySQL 到底能不能放到 Docker 里跑?
查看>>
mysql 前缀索引 命令_11 | Mysql怎么给字符串字段加索引?
查看>>
MySQL 加锁处理分析
查看>>
mysql 协议的退出命令包及解析
查看>>
mysql 参数 innodb_flush_log_at_trx_commit
查看>>
mysql 取表中分组之后最新一条数据 分组最新数据 分组取最新数据 分组数据 获取每个分类的最新数据
查看>>
MySQL 命令和内置函数
查看>>
mysql 四种存储引擎
查看>>
MySQL 在并发场景下的问题及解决思路
查看>>
MySQL 基础架构
查看>>
MySQL 基础模块的面试题总结
查看>>
MySQL 备份 Xtrabackup
查看>>
mYSQL 外键约束
查看>>
mysql 多个表关联查询查询时间长的问题
查看>>