本文共 3015 字,大约阅读时间需要 10 分钟。
A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.
For example, [1,7,4,9,2,5] is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, [1,4,7,2,5] and [1,7,4,5,5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.
Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.
Example 1:
Input: [1,7,4,9,2,5]
Output: 6 Explanation: The entire sequence is a wiggle sequence. Example 2:Input: [1,17,5,10,13,15,10,5,16,8]
Output: 7 Explanation: There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8]. Example 3:Input: [1,2,3,4,5,6,7,8,9]
Output: 2来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/wiggle-subsequence 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。给出一个数组,找到其满足摆动的子序列,最长长度。
方法一:动态规划
up[i]表示到i为止,以上升为结束的最大长度,down[i] 则相反。
class Solution { public int wiggleMaxLength(int[] nums) { if (nums.length <= 1) { return nums.length; } int []up = new int[nums.length]; int []down = new int[nums.length]; up[0] = 1; down[0] = 1; for (int i = 1; i < nums.length; i++) { if (nums[i] > nums[i - 1]) { up[i] = down[i - 1] + 1; down[i] = down[i - 1]; } else if (nums[i] < nums[i - 1]){ up[i] = up[i - 1]; down[i] = up[i - 1] + 1; } else { up[i] = up[i - 1]; down[i] = down[i - 1]; } } return Math.max(up[nums.length - 1], down[nums.length - 1]); }}
方法二:找出拐点的数量即可。
class Solution { public int wiggleMaxLength(int[] nums) { if (nums.length <= 1) { return nums.length; } boolean isUp = false; int index = 1; int ans = 1;// 找到第一处拐点 for (; index < nums.length; index++) { if (nums[index] > nums[index - 1]) { isUp = true; ans = 2; break; } else if (nums[index] < nums[index - 1]){ isUp = false; ans = 2; break; } }// 找出所有拐点的数量 for (int i = index; i < nums.length; i++) { if (nums[i] > nums[i - 1]) { if (!isUp) { ans++; isUp = true; } } else if (nums[i] < nums[i - 1]) { if (isUp) { ans++; isUp = false; } } } return ans; }}